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Today’s Lecture

 Jetpack Compose
◦ Composition

◦ Lifecycle of Composables

◦ Activity lifecycle
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Jetpack Compose

Jetpack Compose

 Declarative UI framework.
◦ Declarative - Describe what you want the final result to be as 

opposed to describing exactly how to do it.

 The tech industry as a whole is moving towards 
declarative UI (for example React, SwiftUI). 

© 2024 Arthur Hoskey. All 
rights reserved.



Composable Function

Composable Functions

 Composables are the fundamental building blocks of apps built 
with Jetpack Compose.

 Use @Composable annotation above a function to create a 
composable function.

◦ This annotation informs the Compose compiler that the function will be 
converting data to UI.

 Composable functions should not return values.

@Composable

fun ShowMessage(message: String) {

    Text( text = "The message is $message" )

}

© 2024 Arthur Hoskey. All 
rights reserved.

Pass data to display as a parameter

Uses the message variable in Text. 

Use a variable in a string by 

prefixing the variable name with $.



Composable Function

Composable Functions

 In a properly designed app, the data a composable function displays 
should come from a screen's ViewModel.

◦ A ViewModel manages data for one screen (each screen has its own ViewModel).

◦ More on ViewModel later in the course.

 Composable functions should not produce "side effects".

◦ For example, it should not write to a property of a shared object.

◦ Instead, it should call functions on the ViewModel and have the ViewModel 
update data.
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Composition

Composition

 A composition describes the UI of an app.

 It is a tree structure that consists of composables.
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@Composable

fun MainScreen() {

    println("MainScreen called")

    Column {

        println("Column called")

        ShowTextFieldFirst()

        ShowTextFieldLast()

    }

}

@Composable

fun ShowTextFieldFirst() {

    println("ShowTextFieldFirst called")

    var text by rememberSaveable { mutableStateOf("") }

    TextField(

        value = text,

        onValueChange = { text = it },

        label = { Text("First") }

    )

}

@Composable

fun ShowTextFieldLast() {

    println("ShowTextFieldLast called")

    var text by rememberSaveable { mutableStateOf("") }

    TextField(

        value = text,

        onValueChange = { text = it },

        label = { Text("Last") }

    )

}

MainScreen

Column

ShowTextFirst

ShowTextLast

Composition (tree of composables)



Composition

Composition

 UI controls are static and must be regenerated to 
change their values.

 If a value in a UI control changes after the initial 
composition, it must perform a recomposition.

 The old view-based UI controls allowed state 
changes, but this has been removed in Compose.
◦ Old view-based UI controls had get/set methods that allowed 

the state to be changed.

◦ Manipulating views manually with get/set was deemed to be 
more error prone.

 Content adapted from the following link:

https://developer.android.com/jetpack/compose/mental-model
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https://developer.android.com/jetpack/compose/mental-model


Lifecycle of Composables

Lifecycle of Composables

 Initial composition happens once.

 Recomposition is generally triggered by a change in state 
and can happen 0 or more times.

 Taken from: 
https://developer.android.com/jetpack/compose/lifecycle
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RecomposeInitial 
Compose

Recompose is done 

0 or more times

Removal

https://developer.android.com/jetpack/compose/lifecycle


Composition and Battery Usage

Composition and Battery Usage

 Important! Compose only regenerates parts of the UI 
where an update has occurred since the previous 
composition.

 This is important because it would be computationally 
expensive to regenerate the whole UI during each 
recomposition. 

 Less computational work means it will require less 
power so battery usage will be minimized.

 For example…
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Composition

Composition and Updates

 The user types "A" in First which triggers a recomposition.

 Only ShowTextFieldFirst is called (the other functions are not called).
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@Composable

fun MainScreen() {

    println("MainScreen called")

    Column {

        println("Column called")

        ShowTextFieldFirst()

        ShowTextFieldLast()

    }

}

@Composable

fun ShowTextFieldFirst() {

    println("ShowTextFieldFirst called")

    var text by rememberSaveable { mutableStateOf("") }

    TextField(

        value = text,

        onValueChange = { text = it },

        label = { Text("First") }

    )

}

@Composable

fun ShowTextFieldLast() {

    println("ShowTextFieldLast called")

    var text by rememberSaveable { mutableStateOf("") }

    TextField(

        value = text,

        onValueChange = { text = it },

        label = { Text("Last") }

    )

}

MainScreen

Column

ShowTextFieldFirst

ShowTextFieldLast

Composition (tree of composables)

After A is typed a 

recomposition 

occurs. It only calls 

ShowTextFieldFirst 

during 

recomposition.

Initial

Composition



LifeCycle - LaunchedEffect

Lifecycle - LaunchedEffect

 LaunchedEffect - Composable that is executed when 
the initial composition happens.

LaunchedEffect(Unit) {

   

    // Add code to run during the initial composition

}
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Note: Unit in Kotlin is similar void 

in Java. Use it when a function 

does not return a meaningful value.



LifeCycle - SideEffect

Lifecycle - SideEffect

 SideEffect - Composable that is executed when a 
composition happens (either an initial compose or a 
recompose).

SideEffect {

   

    // Add code to run during a composition

}
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Activity LifeCycle

 Now on to the activity lifecycle…
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Activity LifeCycle

Activity Lifecycle

 The activity that contains all the composable functions has its own 
lifecycle events.

 Some activity lifecycle events:

◦ onStart (becomes at least partially visible)

◦ onResume (in foreground and user can interact with)

◦ onStop (not visible)

◦ onPause(partially visible, not in foreground)

 The app can react to these events and optimize its use of the device's 
resources. 

 For example, the app can stop some computations when it is not in the 
foreground and then restart those computations when it moves back to 
the foreground.

 A composable function can be setup to run code when these activity 
lifecycle events happen.

 Note: If the containing activity is destroyed the lifecycle event handlers 
will not execute.
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Activity Lifecycle
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Activity LifeCycle Event Handlers

Activity Lifecycle Event Handlers

 Use lifecycle effect functions to run code when the activity lifecycle events 
occur.

 For example:

@Composable

fun MainScreen() {

    LifecycleEventEffect(Lifecycle.Event.ON_PAUSE) {

        println("Lifecycle ON_PAUSE")

    }

    LifecycleEventEffect(Lifecycle.Event.ON_RESUME) {

        println("Lifecycle ON_RESUME")

    }

    LifecycleEventEffect(Lifecycle.Event.ON_START) {

        println("Lifecycle ON_START")

    }

    LifecycleEventEffect(Lifecycle.Event.ON_STOP) {

        println("Lifecycle ON_STOP")

    }

}
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Runs when ON_PAUSE 
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Runs when ON_RESUME 
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End of Slides

 End of Slides

© 2024 Arthur Hoskey. All 
rights reserved.


	Slide 1: BCS 371  Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Jetpack Compose
	Slide 4: Composable Function
	Slide 5: Composable Function
	Slide 6: Composition
	Slide 7: Composition
	Slide 8: Lifecycle of Composables
	Slide 9: Composition and Battery Usage
	Slide 10: Composition
	Slide 11: LifeCycle - LaunchedEffect
	Slide 12: LifeCycle - SideEffect
	Slide 13: Activity LifeCycle
	Slide 14: Activity LifeCycle
	Slide 15: Activity Lifecycle
	Slide 16: Activity LifeCycle Event Handlers
	Slide 17: End of Slides

