
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Jetpack Compose
◦ Composition

◦ Lifecycle of Composables

◦ Activity lifecycle

© 2024 Arthur Hoskey. All
rights reserved.

Jetpack Compose

Jetpack Compose

 Declarative UI framework.
◦ Declarative - Describe what you want the final result to be as

opposed to describing exactly how to do it.

 The tech industry as a whole is moving towards
declarative UI (for example React, SwiftUI).

© 2024 Arthur Hoskey. All
rights reserved.

Composable Function

Composable Functions

 Composables are the fundamental building blocks of apps built
with Jetpack Compose.

 Use @Composable annotation above a function to create a
composable function.

◦ This annotation informs the Compose compiler that the function will be
converting data to UI.

 Composable functions should not return values.

@Composable

fun ShowMessage(message: String) {

 Text(text = "The message is $message")

}

© 2024 Arthur Hoskey. All
rights reserved.

Pass data to display as a parameter

Uses the message variable in Text.

Use a variable in a string by

prefixing the variable name with $.

Composable Function

Composable Functions

 In a properly designed app, the data a composable function displays
should come from a screen's ViewModel.

◦ A ViewModel manages data for one screen (each screen has its own ViewModel).

◦ More on ViewModel later in the course.

 Composable functions should not produce "side effects".

◦ For example, it should not write to a property of a shared object.

◦ Instead, it should call functions on the ViewModel and have the ViewModel
update data.

© 2024 Arthur Hoskey. All
rights reserved.

Composable function data

should mainly come from

the ViewModel

ViewModel
(holds screen data)

Composable Function
(take data and create UI)

Composition

Composition

 A composition describes the UI of an app.

 It is a tree structure that consists of composables.

© 2024 Arthur Hoskey. All
rights reserved.

@Composable

fun MainScreen() {

 println("MainScreen called")

 Column {

 println("Column called")

 ShowTextFieldFirst()

 ShowTextFieldLast()

 }

}

@Composable

fun ShowTextFieldFirst() {

 println("ShowTextFieldFirst called")

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("First") }

)

}

@Composable

fun ShowTextFieldLast() {

 println("ShowTextFieldLast called")

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("Last") }

)

}

MainScreen

Column

ShowTextFirst

ShowTextLast

Composition (tree of composables)

Composition

Composition

 UI controls are static and must be regenerated to
change their values.

 If a value in a UI control changes after the initial
composition, it must perform a recomposition.

 The old view-based UI controls allowed state
changes, but this has been removed in Compose.
◦ Old view-based UI controls had get/set methods that allowed

the state to be changed.

◦ Manipulating views manually with get/set was deemed to be
more error prone.

 Content adapted from the following link:

https://developer.android.com/jetpack/compose/mental-model

© 2024 Arthur Hoskey. All
rights reserved.

https://developer.android.com/jetpack/compose/mental-model

Lifecycle of Composables

Lifecycle of Composables

 Initial composition happens once.

 Recomposition is generally triggered by a change in state
and can happen 0 or more times.

 Taken from:
https://developer.android.com/jetpack/compose/lifecycle

© 2024 Arthur Hoskey. All
rights reserved.

RecomposeInitial
Compose

Recompose is done

0 or more times

Removal

https://developer.android.com/jetpack/compose/lifecycle

Composition and Battery Usage

Composition and Battery Usage

 Important! Compose only regenerates parts of the UI
where an update has occurred since the previous
composition.

 This is important because it would be computationally
expensive to regenerate the whole UI during each
recomposition.

 Less computational work means it will require less
power so battery usage will be minimized.

 For example…

© 2024 Arthur Hoskey. All
rights reserved.

Composition

Composition and Updates

 The user types "A" in First which triggers a recomposition.

 Only ShowTextFieldFirst is called (the other functions are not called).

© 2024 Arthur Hoskey. All
rights reserved.

@Composable

fun MainScreen() {

 println("MainScreen called")

 Column {

 println("Column called")

 ShowTextFieldFirst()

 ShowTextFieldLast()

 }

}

@Composable

fun ShowTextFieldFirst() {

 println("ShowTextFieldFirst called")

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("First") }

)

}

@Composable

fun ShowTextFieldLast() {

 println("ShowTextFieldLast called")

 var text by rememberSaveable { mutableStateOf("") }

 TextField(

 value = text,

 onValueChange = { text = it },

 label = { Text("Last") }

)

}

MainScreen

Column

ShowTextFieldFirst

ShowTextFieldLast

Composition (tree of composables)

After A is typed a

recomposition

occurs. It only calls

ShowTextFieldFirst

during

recomposition.

Initial

Composition

LifeCycle - LaunchedEffect

Lifecycle - LaunchedEffect

 LaunchedEffect - Composable that is executed when
the initial composition happens.

LaunchedEffect(Unit) {

 // Add code to run during the initial composition

}

© 2024 Arthur Hoskey. All
rights reserved.

Note: Unit in Kotlin is similar void

in Java. Use it when a function

does not return a meaningful value.

LifeCycle - SideEffect

Lifecycle - SideEffect

 SideEffect - Composable that is executed when a
composition happens (either an initial compose or a
recompose).

SideEffect {

 // Add code to run during a composition

}

© 2024 Arthur Hoskey. All
rights reserved.

Activity LifeCycle

 Now on to the activity lifecycle…

© 2024 Arthur Hoskey. All
rights reserved.

Activity LifeCycle

Activity Lifecycle

 The activity that contains all the composable functions has its own
lifecycle events.

 Some activity lifecycle events:

◦ onStart (becomes at least partially visible)

◦ onResume (in foreground and user can interact with)

◦ onStop (not visible)

◦ onPause(partially visible, not in foreground)

 The app can react to these events and optimize its use of the device's
resources.

 For example, the app can stop some computations when it is not in the
foreground and then restart those computations when it moves back to
the foreground.

 A composable function can be setup to run code when these activity
lifecycle events happen.

 Note: If the containing activity is destroyed the lifecycle event handlers
will not execute.

© 2024 Arthur Hoskey. All
rights reserved.

Activity Lifecycle
© 2023 Arthur Hoskey. All
rights reserved.

Activity.
onCreate

Activity.
onStart

Activity.
onResume

Activity.
onSave

Instance
State

Activity.
On

Pause

Active

Activity

is killable

Created

Activity.
onStop

Activity.
On

Destroy

Activity.
On

Restart

Visible

Full Lifetime

Activity.
onRestore
Instance

State

Skips

sometimes

Activity LifeCycle Event Handlers

Activity Lifecycle Event Handlers

 Use lifecycle effect functions to run code when the activity lifecycle events
occur.

 For example:

@Composable

fun MainScreen() {

 LifecycleEventEffect(Lifecycle.Event.ON_PAUSE) {

 println("Lifecycle ON_PAUSE")

 }

 LifecycleEventEffect(Lifecycle.Event.ON_RESUME) {

 println("Lifecycle ON_RESUME")

 }

 LifecycleEventEffect(Lifecycle.Event.ON_START) {

 println("Lifecycle ON_START")

 }

 LifecycleEventEffect(Lifecycle.Event.ON_STOP) {

 println("Lifecycle ON_STOP")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Runs when ON_PAUSE

event occurs

Runs when ON_RESUME

event occurs

Runs when ON_START

event occurs

Runs when ON_STOP

event occurs

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Jetpack Compose
	Slide 4: Composable Function
	Slide 5: Composable Function
	Slide 6: Composition
	Slide 7: Composition
	Slide 8: Lifecycle of Composables
	Slide 9: Composition and Battery Usage
	Slide 10: Composition
	Slide 11: LifeCycle - LaunchedEffect
	Slide 12: LifeCycle - SideEffect
	Slide 13: Activity LifeCycle
	Slide 14: Activity LifeCycle
	Slide 15: Activity Lifecycle
	Slide 16: Activity LifeCycle Event Handlers
	Slide 17: End of Slides

